
Yices 1.0: An Efficient SMT Solver

AFM’06 Tutorial

Leonardo de Moura (joint work with Bruno Dutertre)

{demoura, bruno}@csl.sri.com.

Computer Science Laboratory

SRI International

Menlo Park, CA

Yices: An Efficient SMT Solver – p.1



Satisfiability Modulo Theories (SMT)

SMT is the problem of determining satisfiability of formulas modulo

background theories.

Examples of background theories:

linear arithmetic: x + 1 ≤ y

arrays: a[i := v1][j] = v2

uninterpreted functions: f(f(f(x))) = x

datatypes: car(cons(v1, v3)) = v2

bitvectors: concat(bv1, bv2) = bv3

Example of formula:

i − 1 = j + 2, f(i + 3) 6= f(j + 6)

Yices: An Efficient SMT Solver – p.2



Applications of SMT

Extended Static Checking

Equivalence Checking (Hardware)

Bounded Model Checking (e.g., sal-inf-bmc)

Predicate Abstraction

Symbolic Simulation

Test Case Generation (e.g., sal-atg)

AI Planning & Scheduling

Embedded in Theorem Provers (e.g., PVS)

Yices: An Efficient SMT Solver – p.3



Yices

Yices is an SMT Solver developed at SRI International.

Yices is not ICS.

It is used in SAL, PVS, and CALO.

It is a complete reimplementation of SRI’s previous SMT solvers.

It has a new architecture, and uses new algorithms.

Counterexamples and Unsatisfiable Cores.

Incremental: push, pop, and retract.

Weighted MaxSAT/MaxSMT.

Supports all theories in SMT-LIB and much more.

Yices: An Efficient SMT Solver – p.4



Supported Features

Uninterpreted functions

Linear real and integer arithmetic

Extensional arrays

Fixed-size bit-vectors

Quantifiers

Scalar types

Recursive datatypes, tuples, records

Lambda expressions

Dependent types

Yices: An Efficient SMT Solver – p.5



Using Yices

Starting yices shell: ./yices -i

Batch mode:

Yices format: ./yices ex1.ys

SMT-LIB format: ./yices -smt ex1.smt

Dimacs format: ./yices -d ex1.cnf

Increasing verbosity level: ./yices -v 3 ex1.ys

Producing models: ./yices -e ex1.ys

Yices: An Efficient SMT Solver – p.6



First Example

(define f::(-> int int))

(define i::int)

(define j::int)

(assert (= (- i 1) (+ j 2)))

(assert (/= (f (+ i 3)) (f (+ j 6))))

→ unsat

Yices: An Efficient SMT Solver – p.7



Check

assert gets only trivial inconsistencies.

(check) should be used to test satisfiability.

(define x::int)

(define y::int)

(define z::int)

(assert (= (+ (* 3 x) (* 6 y) z) 1))

(assert (= z 2))

(check)

→ unsat

Yices: An Efficient SMT Solver – p.8



Extracting Models

./yices -e ex3.ys

(define x::int)

(define y::int)

(define f::(-> int int))

(assert (/= (f (+ x 2)) (f (- y 1))))

(assert (= x (- y 4)))

(check)

→ sat

(= x -2)

(= y 2)

(= (f 0) 1)

(= (f 1) 3)

Yices: An Efficient SMT Solver – p.9



Extracting Unsatisfiable Cores

./yices -e ex4.ys

(define f::(-> int int))

(define i::int)

(define j::int)

(define k::int)

(assert+ (= (+ i (* 2 k)) 10))

(assert+ (= (- i 1) (+ j 2)))

(assert+ (= (f k) (f i)))

(assert+ (/= (f (+ i 3)) (f (+ j 6))))

(check)

→ unsat

unsat core ids: 2 4

Yices: An Efficient SMT Solver – p.10



Lemma Learning

SMT (and SAT) solvers have a search engine:

Case-split

Propagate

Conflict Backtrack

Each conflict generates a Lemma:

It prevents a conflict from happening again.

Yices: An Efficient SMT Solver – p.11



Retracting Assertions

Assertions asserted with assert+ can be retracted.

Lemmas are reused in the next call to (check).

Yices knows which lemmas are safe to reuse.

(assert+ (= (+ i (* 2 k)) 10))

(assert+ (= (- i 1) (+ j 2)))

(assert+ (= (f k) (f i)))

(assert+ (/= (f (+ i 3)) (f (+ j 6))))

(check)

→ unsat

(retract 2)

(check)

→ sat
Yices: An Efficient SMT Solver – p.12



Stacking logical contexts

(push)

Saves the current logical context on the stack.

(pop)

Restores the context from the top of the stack.

Pops it off the stack.

Any changes between the matching push and pop

commands are flushed.

The context is restored to what it was right before the push.

Applications (depth-first search):

Symbolic Simulation

Extended Static Checking

Yices: An Efficient SMT Solver – p.13



Weighted MaxSAT

./yices -e ex5.ys

(assert+ (= (+ i (* 2 k)) 10) 10)

(assert+ (= (- i 1) (+ j 2)) 20)

(assert+ (= (f k) (f i)) 30)

(assert+ (/= (f (+ i 3)) (f (+ j 6))) 15)

(max-sat)

→ sat

unsatisfied assertion ids: 4

(= i 10) (= k 0) (= j 7) (= (f 0) 11)

(= (f 10) 11) (= (f 13) 12)

cost: 10

Yices: An Efficient SMT Solver – p.14



Type checking

By default, Yices assumes the input is correct.

It may crash if the input has type errors.

You can force Yices to “type check” the input:

./yices -tc ex1.ys

Performance penalty.

Idea: use -tc only when you are developing your front-end for

Yices.

Yices: An Efficient SMT Solver – p.15



Other useful commands

(reset) – reset the logical context.

(status) – display the status of the logical context.

(echo [string]) – prints the string [string].

Yices: An Efficient SMT Solver – p.16



Function (Array) Theory

Yices (like PVS) does not make a distinction between arrays and

functions.

Function theory handles:

Function updates.

Lambda expressions.

Extensionality

Yices: An Efficient SMT Solver – p.17



Function (Array) Theory (cont.)

Example: ./yices f1.ys

(define A1::(-> int int))

(define A2::(-> int int))

(define v::int) (define w::int)

(define x::int) (define y::int)

(define g::(-> (-> int int) int))

(define f::(-> int int))

(assert (= (update A1 (x) v) A2))

(assert (= (update A1 (y) w) A2))

(assert (/= (f x) (f y)))

(assert (/= (g A1) (g A2)))

(check)

→ unsat

Yices: An Efficient SMT Solver – p.18



Lambda expressions

Example: ./yices -e f2.ys

(define f::(-> int int))

(assert (or (= f (lambda (x::int) 0))

(= f (lambda (x::int) (+ x 1)))))

(define x::int)

(assert (and (>= x 1) (<= x 2)))

(assert (>= (f x) 3))

(check)

→ sat

(= x 2) (= (f 2) 3)

Yices: An Efficient SMT Solver – p.19



Recursive datatypes

Similar to PVS and SAL datatypes.

Useful for defining: lists, trees, etc.

Example: ./yices dt.ys

(define-type list

(datatype (cons car::int cdr::list) nil))

(define l1::list)

(define l2::list)

(assert (not (nil? l2)))

(assert (not (nil? l1)))

(assert (= (car l1) (car l2)))

(assert (= (cdr l1) (cdr l2)))

(assert (/= l1 l2))

→ unsat

Yices: An Efficient SMT Solver – p.20



Fixed-size bit-vectors

It is implemented as a satellite theory.

Straightforward implementation:

Simplification rules.

Bit-blasting for all bit-vector operators but equality.

“Bridge” between bit-vector terms and the boolean variables.

Example: ./yices -e bv.ys

(define b::(bitvector 4))

(assert (= b (bv-add 0b0010 0b0011)))

(check)

→ unsat

(= b 0b0101)

Yices: An Efficient SMT Solver – p.21



Dependent types

Useful for stating properties of uninterpreted functions.

Alternative to quantifiers.

Example: ./yices -e d.ys

(define x::real)

(define y::int)

(define floor::(-> x::real

(subtype (r::int) (and (>= x r)

(< x (+ r 1))))))

(assert (and (> x 5) (< x 6)))

(assert (= y (floor x)))

(check)

→ sat

(= x 11/2) (= y 5) (= (floor 11/2) 5)
Yices: An Efficient SMT Solver – p.22



Quantifiers

Main approach: egraph matching (Simplify)

Extension for offset equalities and terms.

Several triggers (multi-patterns) for each universally quantified

expression.

The triggers are fired using a heuristic that gives preference to

the most conservative ones.

Fourier Motzkin elimination to simplify quantified expressions.

Instantiation heuristic based on:

What’s Decidable About Arrays?,

A. R. Bradley, Z. Manna, and H. B. Sipma, VMCAI’06.

Yices: An Efficient SMT Solver – p.23



Quantifiers (cont.)

Yices may return unknown for quantified formulas.

The model should be interpreted as a “potential model”.

Tuning egraph matching:

-mi <num> – Maximum number of quantifier instantiations.

-mp <num> – Maximum number of patterns per quantifier.

-pc <num> – Pattern generation heuristic (0: liberal, 2:

conservative).

Advice: try conservative setting first.

Yices: An Efficient SMT Solver – p.24



Quantifiers: example

./yices q.ys

(define f::(-> int int))

(define g::(-> int int))

(define a::int)

(assert (forall (x::int) (= (f x) x)))

(assert (forall (x::int) (= (g (g x)) x)))

(assert (/= (g (f (g a))) a))

(check)

→ unsat

Yices: An Efficient SMT Solver – p.25



C API

Yices distribution comes with a C library.

Two different APIs:

yices c.h

yicesl c.h (Lite version).

Yices: An Efficient SMT Solver – p.26



Conclusion

Yices is an efficient and flexible SMT solver.

Yices supports all theories in SMT-LIB and much more.

It is being used in SAL, PVS, and CALO.

Yices is not ICS.

Yices is freely available for end-users.

http://yices.csl.sri.com

Supported Platforms:

Linux

Windows: Cygwin & MinGW

Mac OSX

Yices: An Efficient SMT Solver – p.27

http://yices.csl.sri.com

	Satisfiability Modulo Theories (SMT)
	Applications of SMT
	Yices
	Supported Features
	Using Yices
	First Example
	Check
	Extracting Models
	Extracting Unsatisfiable Cores
	Lemma Learning
	Retracting Assertions
	Stacking logical contexts
	Weighted MaxSAT
	Type checking
	Other useful commands
	Function (Array)
Theory
	Function (Array)
Theory (cont.)
	Lambda expressions
	Recursive datatypes
	Fixed-size bit-vectors
	Dependent types
	Quantifiers
	Quantifiers (cont.)
	Quantifiers: example
	C API
	Conclusion

