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Satisfiability Modulo Theories (SMT)

SMT is the problem of determining satisfiability of formulas modulo

background theories.

Examples of background theories:

linear arithmetic: x + 1 ≤ y

arrays: a[i := v1][j] = v2

uninterpreted functions: f(f(f(x))) = x

datatypes: car(cons(v1, v3)) = v2

bitvectors: concat(bv1, bv2) = bv3

Example of formula:

i − 1 = j + 2, f(i + 3) 6= f(j + 6)
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Applications of SMT

Extended Static Checking

Equivalence Checking (Hardware)

Bounded Model Checking (e.g., sal-inf-bmc)

Predicate Abstraction

Symbolic Simulation

Test Case Generation (e.g., sal-atg)

AI Planning & Scheduling

Embedded in Theorem Provers (e.g., PVS)
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Yices

Yices is an SMT Solver developed at SRI International.

Yices is not ICS.

It is used in SAL, PVS, and CALO.

It is a complete reimplementation of SRI’s previous SMT solvers.

It has a new architecture, and uses new algorithms.

Counterexamples and Unsatisfiable Cores.

Incremental: push, pop, and retract.

Weighted MaxSAT/MaxSMT.

Supports all theories in SMT-LIB and much more.
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Supported Features

Uninterpreted functions

Linear real and integer arithmetic

Extensional arrays

Fixed-size bit-vectors

Quantifiers

Scalar types

Recursive datatypes, tuples, records

Lambda expressions

Dependent types

Yices: An Efficient SMT Solver – p.5



Using Yices

Starting yices shell: ./yices -i

Batch mode:

Yices format: ./yices ex1.ys

SMT-LIB format: ./yices -smt ex1.smt

Dimacs format: ./yices -d ex1.cnf

Increasing verbosity level: ./yices -v 3 ex1.ys

Producing models: ./yices -e ex1.ys
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First Example

(define f::(-> int int))

(define i::int)

(define j::int)

(assert (= (- i 1) (+ j 2)))

(assert (/= (f (+ i 3)) (f (+ j 6))))

→ unsat
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Check

assert gets only trivial inconsistencies.

(check) should be used to test satisfiability.

(define x::int)

(define y::int)

(define z::int)

(assert (= (+ (* 3 x) (* 6 y) z) 1))

(assert (= z 2))

(check)

→ unsat
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Extracting Models

./yices -e ex3.ys

(define x::int)

(define y::int)

(define f::(-> int int))

(assert (/= (f (+ x 2)) (f (- y 1))))

(assert (= x (- y 4)))

(check)

→ sat

(= x -2)

(= y 2)

(= (f 0) 1)

(= (f 1) 3)
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Extracting Unsatisfiable Cores

./yices -e ex4.ys

(define f::(-> int int))

(define i::int)

(define j::int)

(define k::int)

(assert+ (= (+ i (* 2 k)) 10))

(assert+ (= (- i 1) (+ j 2)))

(assert+ (= (f k) (f i)))

(assert+ (/= (f (+ i 3)) (f (+ j 6))))

(check)

→ unsat

unsat core ids: 2 4
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Lemma Learning

SMT (and SAT) solvers have a search engine:

Case-split

Propagate

Conflict Backtrack

Each conflict generates a Lemma:

It prevents a conflict from happening again.

Yices: An Efficient SMT Solver – p.11



Retracting Assertions

Assertions asserted with assert+ can be retracted.

Lemmas are reused in the next call to (check).

Yices knows which lemmas are safe to reuse.

(assert+ (= (+ i (* 2 k)) 10))

(assert+ (= (- i 1) (+ j 2)))

(assert+ (= (f k) (f i)))

(assert+ (/= (f (+ i 3)) (f (+ j 6))))

(check)

→ unsat

(retract 2)

(check)

→ sat
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Stacking logical contexts

(push)

Saves the current logical context on the stack.

(pop)

Restores the context from the top of the stack.

Pops it off the stack.

Any changes between the matching push and pop

commands are flushed.

The context is restored to what it was right before the push.

Applications (depth-first search):

Symbolic Simulation

Extended Static Checking
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Weighted MaxSAT

./yices -e ex5.ys

(assert+ (= (+ i (* 2 k)) 10) 10)

(assert+ (= (- i 1) (+ j 2)) 20)

(assert+ (= (f k) (f i)) 30)

(assert+ (/= (f (+ i 3)) (f (+ j 6))) 15)

(max-sat)

→ sat

unsatisfied assertion ids: 4

(= i 10) (= k 0) (= j 7) (= (f 0) 11)

(= (f 10) 11) (= (f 13) 12)

cost: 10
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Type checking

By default, Yices assumes the input is correct.

It may crash if the input has type errors.

You can force Yices to “type check” the input:

./yices -tc ex1.ys

Performance penalty.

Idea: use -tc only when you are developing your front-end for

Yices.
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Other useful commands

(reset) – reset the logical context.

(status) – display the status of the logical context.

(echo [string]) – prints the string [string].
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Function (Array) Theory

Yices (like PVS) does not make a distinction between arrays and

functions.

Function theory handles:

Function updates.

Lambda expressions.

Extensionality
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Function (Array) Theory (cont.)

Example: ./yices f1.ys

(define A1::(-> int int))

(define A2::(-> int int))

(define v::int) (define w::int)

(define x::int) (define y::int)

(define g::(-> (-> int int) int))

(define f::(-> int int))

(assert (= (update A1 (x) v) A2))

(assert (= (update A1 (y) w) A2))

(assert (/= (f x) (f y)))

(assert (/= (g A1) (g A2)))

(check)

→ unsat
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Lambda expressions

Example: ./yices -e f2.ys

(define f::(-> int int))

(assert (or (= f (lambda (x::int) 0))

(= f (lambda (x::int) (+ x 1)))))

(define x::int)

(assert (and (>= x 1) (<= x 2)))

(assert (>= (f x) 3))

(check)

→ sat

(= x 2) (= (f 2) 3)
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Recursive datatypes

Similar to PVS and SAL datatypes.

Useful for defining: lists, trees, etc.

Example: ./yices dt.ys

(define-type list

(datatype (cons car::int cdr::list) nil))

(define l1::list)

(define l2::list)

(assert (not (nil? l2)))

(assert (not (nil? l1)))

(assert (= (car l1) (car l2)))

(assert (= (cdr l1) (cdr l2)))

(assert (/= l1 l2))

→ unsat

Yices: An Efficient SMT Solver – p.20



Fixed-size bit-vectors

It is implemented as a satellite theory.

Straightforward implementation:

Simplification rules.

Bit-blasting for all bit-vector operators but equality.

“Bridge” between bit-vector terms and the boolean variables.

Example: ./yices -e bv.ys

(define b::(bitvector 4))

(assert (= b (bv-add 0b0010 0b0011)))

(check)

→ unsat

(= b 0b0101)
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Dependent types

Useful for stating properties of uninterpreted functions.

Alternative to quantifiers.

Example: ./yices -e d.ys

(define x::real)

(define y::int)

(define floor::(-> x::real

(subtype (r::int) (and (>= x r)

(< x (+ r 1))))))

(assert (and (> x 5) (< x 6)))

(assert (= y (floor x)))

(check)

→ sat

(= x 11/2) (= y 5) (= (floor 11/2) 5)
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Quantifiers

Main approach: egraph matching (Simplify)

Extension for offset equalities and terms.

Several triggers (multi-patterns) for each universally quantified

expression.

The triggers are fired using a heuristic that gives preference to

the most conservative ones.

Fourier Motzkin elimination to simplify quantified expressions.

Instantiation heuristic based on:

What’s Decidable About Arrays?,

A. R. Bradley, Z. Manna, and H. B. Sipma, VMCAI’06.
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Quantifiers (cont.)

Yices may return unknown for quantified formulas.

The model should be interpreted as a “potential model”.

Tuning egraph matching:

-mi <num> – Maximum number of quantifier instantiations.

-mp <num> – Maximum number of patterns per quantifier.

-pc <num> – Pattern generation heuristic (0: liberal, 2:

conservative).

Advice: try conservative setting first.
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Quantifiers: example

./yices q.ys

(define f::(-> int int))

(define g::(-> int int))

(define a::int)

(assert (forall (x::int) (= (f x) x)))

(assert (forall (x::int) (= (g (g x)) x)))

(assert (/= (g (f (g a))) a))

(check)

→ unsat
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C API

Yices distribution comes with a C library.

Two different APIs:

yices c.h

yicesl c.h (Lite version).
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Conclusion

Yices is an efficient and flexible SMT solver.

Yices supports all theories in SMT-LIB and much more.

It is being used in SAL, PVS, and CALO.

Yices is not ICS.

Yices is freely available for end-users.

http://yices.csl.sri.com

Supported Platforms:

Linux

Windows: Cygwin & MinGW

Mac OSX
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