A Fast Linear-Arithmetic Solver for DPLL(T)

Bruno Dutertre and Leonardo de Moura

 $\{bruno, demoura\}@csl.sri.com.$

Computer Science Laboratory SRI International Menlo Park, CA

- Satisfiability Modulo Theories (SMT).
- SMT is the problem of determining satisfiability of formulas modulo background theories.
- Examples of background theories:
 - linear arithmetic: $x + 1 \le y$
 - arrays: $a[i := v_1][j] = v_2$
 - uninterpreted functions: f(f(f(x))) = x
 - data-types: $car(cons(v_1, v_3)) = v_2$
 - bit-vectors: $concat(bv_1, bv_2) = bv_3$

Applications of SMT

- Extended Static Checking
- Equivalence Checking (Hardware)
- Bounded Model Checking
- Predicate Abstraction
- Symbolic Simulation
- Test Case Generation
- AI Planning & Scheduling
- Embedded in Theorem Provers (e.g., PVS)

SAT solvers + Decision Procedures

- This approach was independently developed by several groups: CVC (Stanford), ICS (SRI), MathSAT (Univ. Trento, Italy), Verifun (HP).
- It was motivated by the breakthroughs in SAT solving.
- SAT solver "manages" the boolean structure, and assigns truth values to the atoms in a formula.
- Decision procedure is used to validate the (partial) assignment produced by the SAT solver.
- Decision procedure detects a conflict → a new clause (lemma) is created.

Lemma:

 $\{a_1 = T, a_1 = F, a_3 = F\}$ is inconsistent $\rightsquigarrow \neg a_1 \lor a_2 \lor a_3$

- An inconsistent A set is redundant if $A' \subset A$ is also inconsistent.
- Redundant inconsistent sets ~> Imprecise Lemmas ~> Ineffective pruning of the search space.
- Noise of a redundant set: $A \setminus A_{min}$.
- The imprecise lemma is useless in any context (partial assignment) where an atom in the noise has a different assignment.
- Example: suppose a_1 is in the noise, then $\neg a_1 \lor a_2 \lor a_3$ is useless when $a_1 = F$.

Theory Propagation

- The SAT solver is assigning truth values to the atoms in a formula.
- The partial assignment produced by the SAT solver may imply the truth value of unassigned atoms.
- Example:

$$x = y \land y = z \land (f(x) \neq f(z) \lor f(x) = f(w))$$

The partial assignment $\{x = y \rightarrow T, y = z \rightarrow T\}$ implies f(x) = f(z).

Reduces the number of conflicts and the search space.

Efficient Backtracking

- One of the most important improvements in SAT was efficient backtracking.
- Until recently, backtracking was ignored in the design of decision procedures.
- Extreme (inefficient) approach: restart from scratch on every conflict.
- Other inefficient solutions:
 - Functional data-structures.
 - Backtrackable data-structures (trail-stack).
- Backtracking should be included in the design of the decision procedure.
- Restore to a logically equivalent state.

The ideal SMT solver

- Efficient in real benchmarks.
- Produces precise lemmas.
- Supports Theory Propagation.
- Incremental.
- Efficient Backtracking.
- Produces counterexamples.

Linear Arithmetic (LA)

- Most important theory.
- Present in most applications.
- Algorithms:
 - Graph based (e.g., Bellman-Ford, Floyd-Warshall, etc) for difference logic (DF).
 - Fourier-Motzkin elimination
 - Simplex
- Difference logic is very specialized. The interesting case is linear arithmetic.
- Challenge: efficient on LA and competitive on DF.

Standard Simplex

- Standard Form: Ax = b and $x \ge 0$.
- Much more efficient than Fourier-Motzkin elimination.
- It is not competitive in DF.
- Incremental: add/remove equations (i.e., rows).
- Slow backtracking
- No theory propagation.
- Used in several solvers: Simplify, MathSAT, ICS, Simplics, Old Yices 0.1.
- Off-the-shelf simplex solvers: unsound & incomplete (floating point numbers).

Fast Linear Arithmetic

- Simplex General Form.
- New algorithm based on the Dual Simplex.
- Precise lemmas.
- Efficient Backtracking.
- Efficient Theory Propagation.
- New approach for solving strict inequalities (t > 0).
- Presimplification step.
- Integer problems: Gomory cuts, Branch & Bound, GCD test.
- This algorithm is used in the new Yices.
- Outperforms specialized solvers on difference logic.

• General Form: Ax = 0 and $l_j \le x_j \le u_j$

Example:

 $x \ge 0, (x + y \le 2 \lor x + 2y \ge 6), (x + y = 2 \lor x + 2y > 4)$

$$s_1 = x + y, s_2 = x + 2y,$$

$$x \ge 0, (s_1 \le 2 \lor s_2 \ge 6), (s_1 = 2 \lor s_2 > 4)$$

- Only bounds (e.g., $s_1 \leq 2$) are asserted during the search.
- Presimplification: Unconstrained variables can be eliminated before the beginning of the search.

Equations + Bounds + Assignment

- An assignment is a mapping from variables to values.
- We maintain an assignment that satisfies all equations and bounds.
- The assignment of non dependent variables implies the assignment of dependent variables.
- Equations + Bounds can be used to derive new bounds.
- Example: $x = y z, y \le 2, z \ge 3 \rightsquigarrow x \le -1.$
 - Explanation: $y \le 2, z \ge 3$
- The new bound may be inconsistent with the already known bounds.

• Example:
$$x \leq -1, x \geq 0$$
.

- The method described only handles non-strict inequalities (e.g., $x \le 2$).
- For integer problems, strict inequalities can be converted into non-strict inequalities. x < 1 → x ≤ 0.</p>
- For rational/real problems, strict inequalities can be converted into non-strict inequalities using a small δ. x < 1 → x ≤ 1 − δ.</p>
- We do not compute a δ , we treat it symbolically.
- δ is an infinitesimal parameter: $(c, k) = c + k\delta$

Initial state

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$

Asserting
$$s \ge 1$$

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$

Asserting $s \ge 1$ assignment does not satisfy new bound. $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Asserting $s \ge 1$ pivot s and x (s is a dependent variable). $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Asserting $s \ge 1$ pivot s and x (s is a dependent variable). $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Asserting $s \ge 1$ pivot s and x (s is a dependent variable). $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Asserting $s \ge 1$ update assignment. $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Asserting $s \ge 1$ update dependent variables assignment. $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

• Asserting $x \ge 0$

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$

• Asserting $x \ge 0$ assignment satisfies new bound.

$s \ge 1, x \ge 0$

• Case split
$$\neg y \le 1$$

 $s \ge 1, x \ge 0$
 $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Assignment	Equations	Bounds
x = 1	x = s - y	$s \geq 1$
y = 0	u = s + y	$x \geq 0$
s = 1	v = s - 2y	
u = 1		
v = 1		

• Case split $\neg y \le 1$ assignment does not satisfies new bound. $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Assignment	Equations	Bounds
x = 1	x = s - y	$s \geq 1$
y = 0	u = s + y	$x \geq 0$
s = 1	v = s - 2y	y > 1
u = 1		
v = 1		

• Case split $\neg y \leq 1$ update assignment. $s \geq 1, x \geq 0$ $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$

• Case split $\neg y \leq 1$ update dependent variables assignment.

$s \ge 1, x \ge 0$

Bound violation

• Bound violation pivot x and s (x is a dependent variables).

• Bound violation pivot x and s (x is a dependent variables).

• Bound violation pivot x and s (x is a dependent variables).

Bound violation update assignment.

Bound violation update dependent variables assignment.

 $s \ge 1, x \ge 0$

• Theory propagation $x \ge 0, y > 1 \rightsquigarrow u > 2$

• Theory propagation $u > 2 \rightsquigarrow \neg u \leq -1$ $s \geq 1, x \geq 0$ $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$

• Boolean propagation $\neg y \leq 1 \rightsquigarrow v \geq 2$

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$

• Theory propagation $v \ge 2 \rightsquigarrow \neg v \le -2$ $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Conflict empty clause

Assignment		gnment	Equations	Bounds	
x	—	0	s = x + y	$s \geq 1$	
y	—	$1 + \delta$	u = x + 2y	$x \geq 0$)
S	=	$1 + \delta$	v = x - y	y > 1	
u	=	$2+2\delta$		u > 2	1
v	=	$-1-\delta$			

Backtracking

Assignment		gnment	Equations	Bounds		
x	—	0	s = x + y	$s \geq 1$		
y	=	$1 + \delta$	u = x + 2y	$x \geq 0$		
S	=	$1 + \delta$	v = x - y			
u	—	$2+2\delta$				
v	=	$-1-\delta$				

Asserting $y \le 1$ assignment does not satisfy new bound. $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Asserting $y \le 1$ update assignment. $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

• Asserting $y \leq 1$ update dependent variables assignment.

$s \geq 1, x \geq 0$

Assig	nment	Equations	Bounds		
x =	0	s = x + y	$s \geq 1$		
y =	1	u = x + 2y	$x \geq 0$		
s =	1	v = x - y	$y \leq 1$		
u =	2				
v =	-1				

• Theory propagation $s \ge 1, y \le 1 \rightsquigarrow v \ge -1$ $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Assignment	Equations	Bounds		
x = 0	x = s - y	$s \geq 1$		
y = 1	u = s + y	$x \geq 0$		
s = 1	v = s - 2y	$y~\leq~1$		
u = 2				
v = -1				

▶ Theory propagation $v \ge -1 \rightsquigarrow \neg v \le -2$ $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Assignment	Equations	Bounds
x = 0	x = s - y	$s \geq 1$
y = 1	u = s + y	$x \geq 0$
s = 1	v = s - 2y	$y \leq 1$
u = 2		$v \geq -1$
v = -1		

▶ Boolean propagation $\neg v \leq -2 \rightsquigarrow v \geq 0$ $s \geq 1, x \geq 0$ $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$

Assignment	Equations	Bounds		
x = 0	x = s - y	$s \geq 1$		
y = 1	u = s + y	$x \geq 0$		
s = 1	v = s - 2y	$y \leq 1$		
u = 2		$v \geq -1$		
v = -1				

Bound violation assignment does not satisfy new bound.

 $s \ge 1, x \ge 0$

Assignment		ment	Equations	Bounds
x	—	0	x = s - y	$s \geq 1$
y	—	1	u = s + y	$x \geq 0$
S	=	1	v = s - 2y	$y \leq 1$
u	=	2		$v \geq 0$
v	=	-1		

Bound violation pivot u and s (u is a dependent variable).

Assignment		nent	Equations			Bounds		
x	—	0	x =	s-y	S	\geq	1	
y	=	1	u =	s+y	x	\geq	0	
S	=	1	v =	s - 2y	y	\leq	1	
u	=	2			v	\geq	0	
v	=	-1						

Bound violation pivot u and s (u is a dependent variable).

Assignment		nent	Equations			Bounds		
x	—	0	x =	s-y	S	\geq	1	
y	=	1	u =	s + y	x	\geq	0	
s	=	1	s =	v + 2y	y	\leq	1	
u	=	2			v	\geq	0	
v	=	-1						

Bound violation pivot u and s (u is a dependent variable).

Assignment		Equations	Bounds
x :	= 0	x = v + y	$s \geq 1$
y :	= 1	u = v + 3y	$x \geq 0$
S :	= 1	s = v + 2y	$y \leq 1$
u :	= 2		$v \geq 0$
v :	= -1		

Bound violation update assignment.

Assignment	Equations	Bounds
x = 0	x = v + y	$s \geq 1$
y = 1	u = v + 3y	$x \geq 0$
s = 1	s = v + 2y	$y \leq 1$
u = 2		$v \geq 0$
v = 0		

▶ Bound violation update dependent variables assignment. $s \ge 1, x \ge 0$ $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$

Assignment	Equations	Bounds		
x = 1	x = v + y	$s \geq 1$		
y = 1	u = v + 3y	$x \geq 0$		
s = 2	s = v + 2y	$y \leq 1$		
u = 3		$v \geq 0$		
v = 0				

▶ Boolean propagation $\neg v \leq -2 \rightsquigarrow u \leq -1$ $s \geq 1, x \geq 0$ $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$

Assignment	Equations	Bounds
x = 1	x = v + y	$s \geq 1$
y = 1	u = v + 3y	$x \geq 0$
s = 2	s = v + 2y	$y \leq 1$
u = 3		$v \geq 0$
v = 0		

Bound violation assignment does not satisfy new bound.

 $s \ge 1, x \ge 0$

Assignment	Equations	Bounds
x = 1	x = v + y	$s \geq 1$
y = 1	u = v + 3y	$x \geq 0$
s = 2	s = v + 2y	$y \leq 1$
u = 3		$v \geq 0$
v = 0		$u \leq -1$

• Bound violation pivot u and y (u is a dependent variable).

Assignment	Equations	Bounds
x = 1	x = v + y	$s \geq 1$
y = 1	u = v + 3y	$x \geq 0$
s = 2	s = v + 2y	$y \leq 1$
u = 3		$v \geq 0$
v = 0		$u \leq -1$

• Bound violation pivot u and y (u is a dependent variable).

• Bound violation pivot u and y (u is a dependent variable).

Bound violation update assignment.

As	signr	ment		Εqι	uations	E	3ouno	ds
x	=	1	x	—	$\frac{1}{3}u + \frac{2}{3}v$	S	\geq	1
y	=	1	y	—	$\frac{1}{3}u - \frac{1}{3}v$	x	\geq	0
S	=	2	S	—	$\frac{2}{3}u + \frac{1}{3}v$	y	\leq	1
u	=	-1				v	\geq	0
v	—	0				u	\leq	-1

Bound violation update dependent variables assignment. s > 1, x > 0

Bound violations

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$

As	signment	Equations	Bounds
x	$= -\frac{1}{3}$	$x = \frac{1}{3}u + \frac{2}{3}v$	$s \geq 1$
y	$= -\frac{1}{3}$	$y = \frac{1}{3}u - \frac{1}{3}v$	$x \geq 0$
S	$= -\frac{2}{3}$	$s = \frac{2}{3}u + \frac{1}{3}v$	$y \leq 1$
u	= -1		$v \geq 0$
v	= 0		$u \leq -1$

• Bound violations pivot s and v (s is a dependent variable).

As	signn	nent			Equ	ations		E	Boun	ds
x	—	$-\frac{1}{3}$	а		=	$\frac{1}{3}u + \frac{2}{3}v$		s	\geq	1
y	=	$-\frac{1}{3}$	Y	/	=	$\frac{1}{3}u - \frac{1}{3}v$	_	x	\geq	0
S	—	$-\frac{2}{3}$	S	5	=	$\frac{2}{3}u + \frac{1}{3}v$		y	\leq	1
u	=	-1						v	\geq	0
v	—	0						u	\leq	-1

• Bound violations pivot s and v (s is a dependent variable).

As	signme	nt	Equ	uations	E	Bound	ds
x	= -	$-\frac{1}{3}$ x	; =	$\frac{1}{3}u + \frac{2}{3}v$	s	\geq	1
y	= -	$-\frac{1}{3}$ y	. —	$\frac{1}{3}u - \frac{1}{3}v$	x	\geq	0
S	= -	$-\frac{2}{3}$ v	_	3s - 2u	y	\leq	1
u	= -	-1			v	\geq	0
v	= ()			u	\leq	-1

• Bound violations pivot s and v (s is a dependent variable).

As	signment	Equations	Bounds	
x	$= -\frac{1}{3}$	x = 2s - u	$s \geq 1$	1
y	$= -\frac{1}{3}$	y = -s + u	$x \geq 0$)
S	$= -\frac{2}{3}$	v = 3s - 2u	$y \leq 1$	1
U	= -1		$v \geq 0$)
v	= 0		$u \leq -$	-1

Bound violations update assignment.

Assignment	Equations	Bounds
$x = -\frac{1}{3}$	x = 2s - u	$s \geq 1$
$y = -\frac{1}{3}$	y = -s + u	$x \geq 0$
s = 1	v = 3s - 2u	$y \leq 1$
u = -1		$v \geq 0$
v = 0		$u \leq -1$

Bound violations update dependent variables assignment.

 $s \ge 1, x \ge 0$

Assignment	Equations	Bounds
x = 3	x = 2s - u	$s \geq 1$
y = -2	y = -s + u	$x \geq 0$
s = 1	v = 3s - 2u	$y \leq 1$
u = -1		$v \geq 0$
v = 5		$u \leq -1$

Found satisfying assignment

Assignment	Equations	Bounds
x = 3	x = 2s - u	$s \geq 1$
y = -2 y	y = -s + u	$x \geq 0$
s = 1 v	v = 3s - 2u	$y \leq 1$
u = -1		$v \geq 0$
v = 5		$u \leq -1$

Experimental Results

- The new algorithm is used in Yices 1.0.
- We compared our new solver with:
 - Ario 1.1
 - BarcelogicTools 1.0
 - CVC Lite 2.0
 - MathSAT 3.3.1
 - Old Yices (submitted to SMT-COMP'05)
- We used all SMT-LIB benchmarks available at the time.
 - http://goedel.cs.uiowa.edu/smtlib/
- Timeout: 1 hour, Max. Memory: 1Gb.

BarcelogicTools 1.0 vs. Yices

CVC Lite 2.0 vs. Yices

MathSAT 3.3.1 vs. Yices

Old Yices vs. Yices

Conclusion

- We have presented a new algorithm for linear arithmetic:
 - Precise Explanations.
 - Efficient Backtracking.
 - Efficient Theory Propagation.
 - Presimplification Step.
- Outperforms specialized solvers on difference logic.
- The algorithm is used in Yices 1.0.

Conclusion (cont.)

- Yices 1.0 is competing in SMT-COMP'06.
- Yices supports all theories in SMT-COMP and much more.
 - Linear integer & real (& mixed) arithmetic.
 - Extensional arrays
 - Fixed-size bit-vectors
 - Quantifiers
 - Recursive datatypes, tuples, records
 - Lambda expressions
- Yices 1.0 is freely available for end-users.
 - http://yices.csl.sri.com