
Yices 1.0: An Efficient SMT Solver

SMT-COMP’06

Leonardo de Moura (joint work with Bruno Dutertre)

{demoura, bruno}@csl.sri.com.

Computer Science Laboratory

SRI International

Menlo Park, CA

Yices: An Efficient SMT Solver – p.1

Introduction

Yices is an SMT Solver developed at SRI International.

It is used in SAL, PVS, and CALO.

It is a complete reimplementation of SRI’s previous SMT solvers.

It has a new architecture, and uses new algorithms.

Counterexamples and Unsatisfiable Cores.

Incremental: push, pop, and retract.

Weighted MaxSAT/MaxSMT.

Supports all theories in SMT-COMP.

Yices: An Efficient SMT Solver – p.2

Supported Features

Uninterpreted functions

Linear real and integer arithmetic

Extensional arrays

Fixed-size bit-vectors

Quantifiers

Scalar types

Recursive datatypes, tuples, records

Lambda expressions

Dependent types

Yices: An Efficient SMT Solver – p.3

Benchmarking

It is “impossible” to build an efficient SAT solver (and SMT solver)

for arbitrary formulas.

Ignore hand-made and random benchmarks.

“The breakthrough is SAT solving happened after industrial

benchmarks started to be used.”

Randy Bryant

“What is the hardest part in the implementation of a

theorem prover? Ans: Testing/Benchmarking”

Greg Nelson

Yices: An Efficient SMT Solver – p.4

Architecture

The new architecture integrates:

a modern DPLL-based SAT solver,

a core theory solver that handles equalities and uninterpreted

functions,

satellite theories (for arithmetic, arrays, bit-vectors, etc.).

It should be easy to extract the model.

Yices uses an extension of the standard Nelson-Oppen

combination method.

The core and satellite theories communicate via offset equalities

(x = y + k).

Yices: An Efficient SMT Solver – p.5

DPLL-based SAT solver

Yices can be used as a regular SAT solver (it can read DIMACS

files).

Uses ideas from top performing SAT solvers: MiniSAT, Siege,

zChaff.

Supports the creation of clauses and boolean variables during the

search.

It is tightly integrated with the core theory solver.

Supports user defined constraints. Examples:

Linear pseudo-boolean constraint (used in MaxSMT).

Bridge between bit-vector terms and boolean variables used in

bit-blasting.

Yices: An Efficient SMT Solver – p.6

DPLL-based SAT solver (cont.)

Explanations for assigned literals:

Clause (like any SAT solver).

Generic explanation.

Antecedents can be computed only when they are needed.

Very convenient for implementing new theories.

Avoids flooding the SAT solver with useless clauses.

Processes the case-splits produced by satellite theories:

Bit-vector

Linear integer arithmetic

Array

Yices: An Efficient SMT Solver – p.7

Core Theory Solver

Core theory solver handles (offset) equalities and uninterpreted

functions.

Offset equalities less communication overhead.

Offset equalities less shared variables.

The algorithm used in the core is similar to the one used in the

Simplify theorem prover.

Extensions for producing precise explanations and for handling

offset equalities.

Exhaustive theory propagation (equalities & disequalities).

x1 = . . . = xn 6= ym = . . . = y1 x1 6= y1

Satellite theories are attached to the core.

It is very easy to add new satellite theories.
Yices: An Efficient SMT Solver – p.8

Equality propagation

Satellite theories are not required to propagate all implied

equalities.

Yices case splits on (offset) equalities between shared variables to

achieve completeness.

Each theory is responsible for creating the required case-splits.

Simple filters are used to minimize the number of case-splits.

Example: suppose the core contains four terms f(x1, x2),

f(x3, x4), g(x5), and g(x6), and x1 to x6 are shared

variables.

Case splitting on x1 = x3, x2 = x4 and x5 = x6 is sufficient.

Yices: An Efficient SMT Solver – p.9

Linear arithmetic

Novel Simplex-based algorithm (see CAV’06 paper).

Efficient backtracking and theory propagation.

New approach for solving strict inequalities (t > 0).

Presimplification step.

Integer arithmetic: Gomory Cuts, Branch & Bound, and GCD

Test.

Arbitrary precision arithmetic.

On sparse problems, this solver is competitive with tools

specialized for difference logic.

For dense difference-logic problems, Yices uses a specialized

algorithm based on incremental Floyd-Warshall.

Yices: An Efficient SMT Solver – p.10

Dynamic Ackermann Axiom

Yices creates the clause x 6= y ∨ f(x) = f(y) whenever the

congruence rule x = y f(x) = f(y) is used to deduce a

conflict.

Yices can perform the propagation f(x) 6= f(y) x 6= y, which

is missed by traditional congruence-closure algorithms.

This propagation rule has a dramatic performance benefit on many

problems.

Avoids flooding the SAT solver with unnecessary instances.

DPLL solver clause-deletion heuristics can safely remove any of

the dynamically created instances since they are not required for

completeness.

Yices: An Efficient SMT Solver – p.11

Function (Array) Theory

Yices (like PVS) does not make a distinction between arrays and

functions.

Function theory handles: function updates, lambda expressions,

and extensionality.

Lazy instantiation of theory axioms.

∀f, i, v. select(store(f, i, v), i) = v

∀f, i, j, v. i = j ∨ select(store(f, i, v), j) = select(f, j)

∀f, g. f = g ∨ ∃k. select(f, k) 6= select(g, k)

Yices: An Efficient SMT Solver – p.12

Function (Array) Theory (cont.)

Lazy reduction to uninterpreted functions.

f ∼ g means f and g are in the same equivalence class.

store(f, i, v) select(store(f, i, v), i) = v

g ∼ store(f, i, v), select(g, j)

i = j ∨ select(store(f, i, v), j) = select(f, j)

g ∼ f, store(f, i, v), select(g, j)

i = j ∨ select(store(f, i, v), j) = select(f, j)

f 6= g for a fresh k

select(f, k) 6= select(g, k) ∧ typepred(k)

A similar approach is used to implement tuples, records and

recursive datatypes.

Yices: An Efficient SMT Solver – p.13

Bit-vector Theory

It is implemented as a satellite theory.

So, core theory handles equalities and uninterpreted functions.

Straightforward implementation:

Simplification rules.

Bit-blasting for all bit-vector operators but equality.

“Bridge” between bit-vector terms and the boolean variables.

Yices: An Efficient SMT Solver – p.14

Quantifiers

Main approach: egraph matching (Simplify)

Extension for offset equalities and terms.

Several triggers (multi-patterns) for each universally quantified

expression.

The triggers are fired using a heuristic that gives preference to

the most conservative ones.

Fourier Motzkin elimination to simplify quantified expressions.

Instantiation heuristic based on:

What’s Decidable About Arrays?,

A. R. Bradley, Z. Manna, and H. B. Sipma, VMCAI’06.

Yices: An Efficient SMT Solver – p.15

Conclusion

Yices is an efficient and flexible SMT solver.

Yices supports all theories in SMT-COMP and much more.

It is being used in SAL, PVS, and CALO.

Fixed all bugs in Yices 0.1.

Tested on all (42167) SMT-LIB benchmarks with 10 different

random seeds.

Yices is not ICS.

Yices is freely available for end-users.

http://yices.csl.sri.com

Yices tutorial: AFM workshop (Tomorrow - August 21)

Yices: An Efficient SMT Solver – p.16

http://yices.csl.sri.com

	Introduction
	Supported Features
	Benchmarking
	Architecture
	DPLL-based SAT solver
	DPLL-based SAT solver (cont.)
	Core Theory Solver
	Equality propagation
	Linear arithmetic
	Dynamic Ackermann Axiom
	Function (Array)
Theory
	Function (Array)
Theory (cont.)
	Bit-vector Theory
	Quantifiers
	Conclusion

