Yices 1.0: An Efficient SMT Solver
SMT-COMP’06

Leonardo de Moura (joint work with Bruno Dutertre)

{demoura, bruno } @csl.sri.com.

Computer Science Laboratory
SRI International
Menlo Park, CA

Yices: An Efficient SMT Solver — p.1

Introduction

» Yices is an SMT Solver developed at SRI International.
» Itisused in SAL, PVS, and CALO.

» Itis a complete reimplementation of SRI's previous SMT solvers.
» It has a new architecture, and uses new algorithms.
» Counterexamples and Unsatisfiable Cores.
» Incremental: push, pop, and retract.

» Weighted MaxSAT/MaxSMT.

» Supports all theories in SMT-COMP.

Yices: An Efficient SMT Solver — p.2

Supported Features

» Uninterpreted functions

» Linear real and integer arithmetic

» Extensional arrays

» Fixed-size bit-vectors

» Quantifiers

» Scalar types

» Recursive datatypes, tuples, records
» Lambda expressions

» Dependent types

Yices: An Efficient SMT Solver — p.3

Benchmarking

» It is “Impossible” to build an efficient SAT solver (and SMT solver)

for arbitrary formulas.

» Ignore hand-made and random benchmarks.

“The breakthrough is SAT solving happened after industrial
benchmarks started to be used.”

Randy Bryant

“What is the hardest part in the implementation of a
theorem prover? Ans: Testing/Benchmarking”

Greg Nelson

Yices: An Efficient SMT Solver — p.4

Architecture

» The new architecture integrates:
» a modern DPLL-based SAT solver,

» a core theory solver that handles equalities and uninterpreted

functions,
» satellite theories (for arithmetic, arrays, bit-vectors, etc.).

» It should be easy to extract the model.

» Yices uses an extension of the standard Nelson-Oppen

combination method.

» The core and satellite theories communicate via offset equalities
(x =y + k).

Yices: An Efficient SMT Solver — p.5

DPLL-based SAT solver

» Yices can be used as a regular SAT solver (it can read DIMACS

files).

» Uses ideas from top performing SAT solvers: MiniSAT, Siege,
zChaff.

» Supports the creation of clauses and boolean variables during the

search.
» Itis tightly integrated with the core theory solver.

» Supports user defined constraints. Examples:
» Linear pseudo-boolean constraint (used in MaxSMT).

» Bridge between bit-vector terms and boolean variables used in

bit-blasting.

Yices: An Efficient SMT Solver — p.6

DPLL-based SAT solver (cont.)

» Explanations for assigned literals:
» Clause (like any SAT solver).
» Generic explanation.
» Antecedents can be computed only when they are needed.
» Very convenient for implementing new theories.
» Avoids flooding the SAT solver with useless clauses.
» Processes the case-splits produced by satellite theories:
» Bit-vector
» Linear integer arithmetic

» Array

Yices: An Efficient SMT Solver — p.7

Core Theory Solver

» Core theory solver handles (offset) equalities and uninterpreted

functions.
» Offset equalities ~~ less communication overhead.

» Offset equalities ~~ less shared variables.

» The algorithm used in the core is similar to the one used in the

Simplify theorem prover.

» Extensions for producing precise explanations and for handling

offset equalities.
» Exhaustive theory propagation (equalities & disequalities).

VL= =T F Y ==Y T F Y

» Satellite theories are attached to the core.

» Itis very easy to add new satellite theories.

Yices: An Efficient SMT Solver — p.8

Equality propagation

» Satellite theories are not required to propagate all implied

equalities.

» Yices case splits on (offset) equalities between shared variables to

achieve completeness.
» Each theory is responsible for creating the required case-splits.

» Simple filters are used to minimize the number of case-splits.

» Example: suppose the core contains four terms f(a:l, :CQ),
f(xs,x4), g(xs), and g(x¢), and 2 to x4 are shared

variables.

» Case splittingon 1 = x3, r9 = x4 and x5 = X IS sufficient.

Yices: An Efficient SMT Solver — p.9

Linear arithmetic

» Novel Simplex-based algorithm (see CAV’06 paper).
» Efficient backtracking and theory propagation.
» New approach for solving strict inequalities (z > 0).
» Presimplification step.

» Integer arithmetic: Gomory Cuts, Branch & Bound, and GCD
Test.

» Arbitrary precision arithmetic.

» On sparse problems, this solver is competitive with tools

specialized for difference logic.

» For dense difference-logic problems, Yices uses a specialized

algorithm based on incremental Floyd-Warshall.

Yices: An Efficient SMT Solver — p.10

Dynamic Ackermann Axiom

» Yices creates the clause = # y \V f(x) = f(y) whenever the
congruence rule © = y ~» f(x) = f(y) is used to deduce a

conflict.

» Yices can perform the propagation f(x) # f(y) ~ x # y, which

IS missed by traditional congruence-closure algorithms.

» This propagation rule has a dramatic performance benefit on many

problems.
» Avoids flooding the SAT solver with unnecessary instances.

» DPLL solver clause-deletion heuristics can safely remove any of
the dynamically created instances since they are not required for

completeness.

Yices: An Efficient SMT Solver — p.11

Function (Array) Theory

» Yices (like PVS) does not make a distinction between arrays and

functions.

» Function theory handles: function updates, lambda expressions,

and extensionality.
» Lazy instantiation of theory axioms.
» Vf,i,v. select(store(f,i,v),1) =v
» Vf,i,5,v.1 =3V select(store(f,i,v),7) = select(f,])
» Vf,g. f =gV 3k. select(f, k) # select(g, k)

Yices: An Efficient SMT Solver — p.12

Function (Array) Theory (cont.)

» Lazy reduction to uninterpreted functions.
» f ~ gmeans [and g are in the same equivalence class.
» store(f,i,v) ~~ select(store(f,i,v),i) =v
» g ~ store(f,,v),select(g,j) ~
i = 7 V select(store(f,7,v),j) = select(f,)

» g ~ f,store(f,i,v),select(g,j) ~

i = 7 V select(store(f,7,v),j) = select(f,)
» [# g ~~forafresh k

select(f, k) # select(g, k) A typepred (k)

» A similar approach is used to implement tuples, records and

recursive datatypes.

Yices: An Efficient SMT Solver — p.13

Bit-vector Theory

» Itis implemented as a satellite theory.
» So, core theory handles equalities and uninterpreted functions.

» Straightforward implementation:
» Simplification rules.
» Bit-blasting for all bit-vector operators but equality.

» “Bridge” between bit-vector terms and the boolean variables.

Yices: An Efficient SMT Solver — p.14

Quantifiers

» Main approach: egraph matching (Simplify)
» Extension for offset equalities and terms.

» Several triggers (multi-patterns) for each universally quantified
expression.

» The triggers are fired using a heuristic that gives preference to

the most conservative ones.
» Fourier Motzkin elimination to simplify quantified expressions.
» Instantiation heuristic based on:

What's Decidable About Arrays?,
A. R. Bradley, Z. Manna, and H. B. Sipma, VMCAI'06.

Yices: An Efficient SMT Solver — p.15

Conclusion

» Yices is an efficient and flexible SMT solver.
» Yices supports all theories in SMT-COMP and much more.

» Itis being used in SAL, PVS, and CALO.
» Fixed all bugs in Yices 0.1.

» Tested on all (42167) SMT-LIB benchmarks with 10 different

random seeds.
» Yicesis not ICS.
» Yices is freely available for end-users.
» http://yices.csl.sri.com

» Yices tutorial: AFM workshop (Tomorrow - August 21)

Yices: An Efficient SMT Solver — p.16

http://yices.csl.sri.com

	Introduction
	Supported Features
	Benchmarking
	Architecture
	DPLL-based SAT solver
	DPLL-based SAT solver (cont.)
	Core Theory Solver
	Equality propagation
	Linear arithmetic
	Dynamic Ackermann Axiom
	Function (Array)
Theory
	Function (Array)
Theory (cont.)
	Bit-vector Theory
	Quantifiers
	Conclusion

