
Yices 2.2 ?

Bruno Dutertre

Computer Science Laboratory, SRI International,
333 Ravenswood Avenue, Menlo Park, CA 94025, USA

bruno@csl.sri.com

Abstract. Yices is an SMT solver developed by SRI International. The first ver-
sion of Yices was released in 2006 and has been continuously updated since then.
In 2007, we started a complete re-implementation of the solver to improve per-
formance and increase modularity and flexibility. We describe the latest release
of Yices, namely, Yices 2.2. We present the tool’s architecture and discuss the
algorithms it implements, and we describe recent developments such as support
for the SMT-LIB 2.0 notation and various performance improvements.

1 Introduction

SRI International has a long history in developing formal verification tools. Shostak de-
veloped his decision procedures and combination method while at SRI in the 1980s [1].
Since then, SRI has continuously extended and supported decision procedures as part
the PVS theorem prover [2, 3]. Methods for combining Boolean satisfiability solvers
and decision procedures were also pioneered at SRI in the ICS solver [4]. In 2006, we
released Yices 1, an efficient SMT solver that was the state of the art. Yices 1 intro-
duced an innovative Simplex-based decision procedure designed to efficiently integrate
with a SAT solver [5], included a congruence-closure algorithm inspired by Simplify’s
E-graph [6], and used an approach for theory combination based on the Nelson-Oppen
method [7] complemented with lazy generation of interface equalities (an optimization
of the method proposed by Bozzano et al. [8]). These main ingredients and others intro-
duced by Yices 1 are now common in general-purpose SMT solvers such as Z3, CVC,
MathSAT, VeriT, and SMTInterpol [9–13].

Although Yices 1 remains a decent SMT solver to this day, it has some limitations:

– Yices 1 relies on a complex type system that includes predicate subtypes as in
PVS. This logic is very expressive but it has a major drawback: type-correctness is
undecidable in general. This is very confusing for users and leads to many problems
as the behavior of Yices 1 on specifications that are not type correct is chaotic.

– Yices 1 was designed to be used mostly via a textual interface (i.e., by reading
specifications from files), but many applications require close interaction with an
SMT solver via a programmable interface. Yices 1 can be used as a library but its

? This work was supported in part by DARPA under contract FA8750-12-C-0284 and by the
NSF Grant SHF:CSR-1017483. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the
funding agencies.

API is cumbersome and incomplete, which makes it difficult to integrate Yices 1 in
other software.

– Yices 1 has poor performance on certain classes of problems, most notably prob-
lems that involve bitvectors.

To address these issues, we started a complete re-implementation of Yices in 2007.
Prototypes of the resulting new Yices 2 solver entered the SMT Competition in 2008
and in 2009. We then released a full-featured version of Yices 2 in May 2012, with
a few updates for bug fixes since then. This paper describes our latest SMT solver—
Yices 2.2—the first solver in the Yices family to support the SMT-LIB 2.0 notation.

2 Logic

The Yices 2 logic is the Yices 1 logic without the most complex type constructs. Prim-
itive types include the arithmetic types int and real, bitvectors, and Boolean. One
can extend this set by declaring new uninterpreted and scalar types. An uninterpreted
type denotes a nonempty collection of object with no cardinality constraint. A scalar
type denotes a nonempty finite collection of objects. In addition to these atomic types,
Yices 2 provides constructors for function and tuple types. Yices 2 uses a simple form
of subtyping: int is a subtype of real, and the subtyping relation extends in a natural
way to tuple and function types. Details are given in the Yices 2 manual [14].

Yices 2 supports the usual Boolean and arithmetic operators, and all the bitvector
operators defined in the SMT-LIB 1.2 and SMT-LIB 2.0 specifications [15, 16]. It also
includes operations on tuples, and an update operation that applies to any function
type. If f is a function, then the term (update f t1 . . . tn v) is the function that maps
(t1, . . . , tn) to v and is equal to f at all other points. This generalizes the SMT-LIB
store operation to arbitrary function types.

In summary, the Yices 2 logic is broadly similar to the array, arithmetic, and bitvec-
tor logics defined in SMT-LIB 2.0, with extensions to support tuples and scalar types,
and with a more general function-update operation. Yices 2’s subtyping mechanism al-
lows arithmetic terms of integer and real types to be mixed arbitrarily (whereas Int
and Real are disjoint types in SMT-LIB 2.0).

3 System Architecture

Figure 1 shows the core architecture of the Yices 2 library. The software is decomposed
into three main modules for manipulating terms and types, contexts, and models, which
are the main data types available in the Yices API. Additional components include the
front ends that process specifications in different input languages, but these components
are not part of the library.

Internally, Yices 2 maintains a global database of terms and types. The API provides
a large number of functions for constructing terms and types, for pretty printing, and so
forth. Unlike Yices 1, Yices 2 provides a complete API: all term and type constructors
defined in the Yices 2 language are present in the API. We have paid special attention

Terms Contexts Models

Terms
and
types

Simplifier
Internalizer

Solver

Simplifier
Internalizer

Solver

Fig. 1. Toplevel Architecture

to memory consumption by using compact data structures for terms and types, and by
employing hash-consing to maximize sharing of subterms.

The second main module implements operations on contexts. A context is a central
data structure that stores assertions to be checked for satisfiability. The API includes
operations for creating and configuring contexts, adding and removing assertions, and
for checking satisfiability of the asserted formulas. Internally, a context includes a solver
and a module to simplify assertions and convert them into the internal form used by the
solver. Contexts are highly flexible and can be configured to support a specific class of
formulas, to apply different preprocessing and simplification procedures, and to use a
specific solver or combination of solvers.

If the set of assertions in a context is satisfiable, then one can build a model of
the formulas. Such a model maps uninterpreted symbols present in the assertions to
concrete values such as rational or bitvector constants. A model is a separate object
that can be queried and examined independently of the context from which it was built.
Once a model is created from a context, it is not affected by further operations on this
context. The model can remain in existence after the context is deleted.

A particular focus is to make Yices 2 easy to use as a library and enable flexible
operations on multiple contexts and models while using a shared set of terms. Efficient
operation on multiple contexts is crucial to applications related to software or control
synthesis, such as exists/forall SMT solving [17–19].

4 Solvers

Yices includes a Boolean satisfiability solver and theory solvers for four main theories:
uninterpreted functions with equalities, linear arithmetic, bitvectors, and arrays. These
solvers can be combined as illustrated in Figure 2. It is also possible to select different
solvers or combinations depending on the problem. For example, a specialized solver
can be built by attaching the arithmetic solver directly to the SAT solver. The API
provides functions to select the right solver combination when a context is created.

The SAT solver uses the CDCL approach. It is similar in performance and imple-
mentation to solvers such as Minisat 1.4 [20] or Picosat [21], with extensions to com-

CDCL
SAT

Solver

UF
Solver

Array
Solver

Arithmetic
Solver

Bitvector
Solver

Fig. 2. Solver Architecture

municate with the theory solvers. For example, theory solvers can dynamically create
literals and add clauses during the CDCL search, and can assign literals via theory
propagation.

The solver for uninterpreted functions (UF) implements a congruence closure al-
gorithm. The implementation is inspired by Simplify [6] with support for explana-
tions [22], and a heuristic for dynamic Ackermannization [23, 24]. This UF solver sup-
ports Boolean terms. This enables the UF solver to store equalities as binary terms of
the form (eq t u) and efficiently perform propagation by congruence closure. A simple
example is the following propagation

(eq t u) = false ∧ t = v ∧ u = w ⇒ (eq w v) = false,

effectively deducing that w 6= v follows from t 6= u by congruence. This idea was
introduced by the first Yices 2 prototype in 2008 and has since been adopted by other
solvers.

The main arithmetic solver implements a decision procedure based on Simplex [5].
Yices also includes two specialized solvers for the difference-logic fragments of linear
arithmetic. These two solvers rely on a variant of the Floyd-Warshall algorithm. One
deals with integer difference logic and the other with real difference logic.

The bitvector solver is based on the “bit-blasting” approach. It applies various sim-
plifications to bitvector constraints, then convert them to a pure Boolean SAT problem
that is handled by the CDCL solver. In problems that combine uninterpreted functions
and bitvectors or arrays and bitvectors, the bitvector solver dynamically adds constraints
in the SAT solver as it receives equalities from the UF solver.

The array solver relies on instantiating the classic array axioms:

((update f i v) i) = v (1)
((update f i v) j) = (f j) if i 6= j (2)

The solver eagerly generates instances of axiom (1) for every update term. On the
other hand, it uses a lazy strategy for generating instances of axiom (2). After the UF
and other theory solvers have built a consistent model (as explained below), the array

solver searches for instances of axiom (2) that are false in this model. It adds these
instances to the clause database, which triggers search for a different model.

5 Recent Developments

Yices 2.1 was released in August 2012. Since then, we have implemented new features,
most notably a front end for SMT-LIB 2.0. Yices 2.2 supports most of the SMT-LIB 2.0
specification, except proof generation and construction of unsat cores.

Y
ic

es
 2

.1

Yices 2.2

0.1

1

10

100

timeout

abort

0.1 1 10 100 1200
0.001

0.01

0.1

1

10

100

1000

10000

100000

0 1000 2000 3000 4000 5000 6000 7000

cu
m

ul
at

iv
e

tim
e

(in
 s

ec
on

ds
)

problems solved

Yices-2.2
CVC-4

Mathsat-5
Z3

Fig. 3. Yices-2.2 on QF UF Benchmarks

We have also added new preprocessing procedures, such as, the symmetry-breaking
algorithm of Déharbe et al. [25]. Figure 3 shows the resulting performance improvement
on the QF UF benchmarks of SMT-LIB. The left part is a “scatter plot” comparing
Yices-2.2 and Yices-2.1. Every point above the diagonal is a benchmark that Yices-2.2
solves faster than Yices-2.1. Yices-2.2 solves all benchmarks, whereas Yices-2.1 has
two timeouts. The right part of the figure compares Yices-2.2 with other solvers1 on
the same benchmarks. All solvers in this graph use symmetry breaking, but Yices-2.2
is significantly faster. This data was collected on Linux machines (Ubuntu 12.04) with
a timeout of 20 min. and a memory limit of 6 GB.

Another recent development is a new theory-combination method. In Yices, theory
combination always involves UF on one side and another theory T (arithmetic or bitvec-
tor) on the other. Given two sets of formulas Γ1 and Γ2, such that Γ1 is satisfiable in UF
and Γ2 is satisfiable in T , the goal is to ensure that Γ1∪Γ2 is satisfiable in the combined
theory. For this purpose, Yices 2.2 uses a model-based approach [24]. Given a model
M1 of Γ1 (computed by the UF solver) and a model M2 of Γ2, we must ensure that M1

and M2 agree on equalities between variables that occur in Γ1 ∩ Γ2. By construction,
the UF solver propagates all implied equalities to the bitvector and arithmetic solvers.

1 All experiments mentioned in this paper used solvers that entered the main track of SMT-
COMP 2012, plus Z3 version 4.2.

The only conflicts between M1 and M2 are then pairs of shared variables (x, y) such
that

M2 |= x = y but M1 |= x 6= y.

To fix this conflict, Yices 2.2 attempts to modifyM1 locally by merging the congruence
classes of x and y while keeping M2 unchanged. This merging is applied if it does not
conflict with existing disequalities in the UF solver, and if it does imply an equality
u = v where u and v are shared variables that have distinct values in M2 (i.e., merging
of x and y would cause more variables to become equal in theory T). If the conflict
cannot be solved, Yices 2.2 generates an interface lemma that forces backtracking and
search for different models. For example, in linear arithmetic, an interface lemma has
the form

(eq x y) ∨ (x < y) ∨ (y < x),

which includes the UF atom (eq x y) and two arithmetic atoms. However, local mod-
ification of M1 is often successful and can often make M1 and M2 consistent without
generating any lemmas. This algorithm is particularly effective on the SMT-LIB bench-
marks that mix arrays and bitvectors. As shown in Figure 4, Yices 2.2 is competitive on
such benchmarks with solvers specialized for bitvector problems. Yices 2.2 is generally
fast, but Boolector 1.5 solves the most benchmarks (one more than Yices 2.2).

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 2000 4000 6000 8000 10000 12000 14000 16000

cu
m

ul
at

iv
e

tim
e

problems solved

Yices-2.2
CVC-4

Mathsat-5
Z3

Boolector-1.5
Sonolar

TdW

100

1000

10000

100000

14000 14050 14100 14150 14200 14250 14300

cu
m

ul
at

iv
e

tim
e

problems solved

Yices-2.2
CVC-4

Mathsat-5
Z3

Boolector-1.5
Sonolar

TdW

Fig. 4. Yices-2.2. vs. other Solvers on QF AUFBV Problems

6 Conclusion

Yices 2 is a complete re-implementation of the Yices 1 solver. It is designed to be modu-
lar and extensible, to be efficient on a large class of problems, and to provide a rich API
to enable advanced applications of SMT solving such as exists/forall SMT. Yices 2 now
supports both versions of the SMT-LIB notation in addition to its own input language.
Yices 2.2 is distributed at http://yices.csl.sri.com. Precompiled binaries
are available for common operating systems such as Linux, Windows, Mac OS X and
FreeBSD. Yices 2.2 is free for research and other non-commercial use.

References

1. Shostak, R.E.: Deciding Combinations of Theories. In: Loveland, D.W. (ed.) 6th Confer-
ence on Automated Deduction (CADE), LNCS, vol. 138, pp. 209–222. Springer, Heidelberg
(1982)

2. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In: Kapur, D.
(ed.), Automated Deduction—CADE–11, LNCS, vol. 607, pp. 748–752. Springer, Heidel-
berg (1992)

3. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal Verification of Fault-Tolerant Ar-
chitectures: Prolegomena to the Design of PVS. IEEE Transactions on Software Engineering
21(2), 107–125 (February 1995)

4. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N.: The ICS Decision Procedures
for Embedded Deduction. In: Basin, D., Rusinowitch, M. (eds.) Automated Reasoning (IJ-
CAR 2004), LNCS, vol. 3097, pp. 218–222. Springer, Heidelberg (2004)

5. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) Computer-Aided Verification (CAV’2006), LNCS, vol 4144, pp. 81–94. Springer,
Heidelberg (2006)

6. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Checking.
Journal of the ACM 52(3), 365–473 (May 2005)

7. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM Transac-
tions on Programming Languages and Systems 1(2), 245–257 (1979)

8. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Ranise, S., van Rossum, P., Sebas-
tiani, R.: Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In:
Etessami, K., Rajamani, S.K. (eds.) Computer Aided Verification (CAV 2005), LNCS, vol.
3576, pp. 335–349. Springer, Heidelberg (2005)

9. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C., Rehof, J.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2008),
LNCS, vol 4963, pp. 337–340. Springer, Heidelberg (2008)

10. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification
(CAV 2011), LNCS, vol 6806, pp. 171–177. Springer, Heidelberg (2011)

11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT Solver. In:
Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2013), LNCS, vol 7795, pp. 93–107. Springer, Heidelberg (2013)

12. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An Open, Trustable, and
Efficient SMT Solver. In Schmidt, R.A. (ed.) Automated Deduction—CADE–22, LNCS,
vol 5663, pp. 151–156. Springer, Heidelberg (2009)

13. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver. In: Don-
aldson, A., Parker, D. (eds.) Model Checking Software (SPIN Workshop 2012), LNCS,
vol 7385, pp. 248–254. Springer, Heidelberg (2012)

14. Dutertre, B.: Yices 2 Manual. Technical report, Computer Science Laboratory, SRI Interna-
tional (2014) Included in the Yices 2 distribution.

15. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Technical report, SMT-LIB
Initiative (2006) Available at http://www.smtlib.org.

16. Barrett, C., Sump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Technical report,
SMT-LIB Initiative (2012) Available at http://www.smtlib.org.

17. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-Guided Component-Based Program
Synthesis. In: Kramer, J., Bishop, J., Devanbu, P. T., Uchitel, S. (eds) Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering (ICSE), 215–224. ACM
(2010)

18. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing Switching Logic using Constraint Solving.
In: Jones, N.D., Müller-Olm, M. (eds.) Verification, Model Checking, and Abstract Interpre-
tation (VMCAI), LNCS, vol 5403, pp. 305–319. Springer, Heidelberg (2009)

19. Cheng, C.H., Shankar, N., Rueß, H., Bensalem, S.: EFSMT: A Logical Framework for
Cyber-Physical Systems. arXiv:1306:3456b2 and http://www6.in.tum.de/

˜chengch/efsmt/ (June 2014)
20. Eén, N., Sörensson, N.: An Extensible SAT Solver. In: Giunchiglia, E., Tacchella, A. (eds.)

Theory and Applications of Satisfiability Testing (SAT 2003), LNCS, vol 2919, pp. 502–518.
Springer, Heidelberg (2003)

21. Biere, A.: PicoSAT Essentials. Journal on Satisfiability, Boolean Modelling, and Computa-
tion (JSAT) 4, 75–97 (2008)

22. Nieuwenhuis, R., Oliveras, A.: Fast Congruence Closure and Extensions. Information and
Computation 205(4), 557–580 (2007)

23. Dutertre, B., de Moura, L.: The Yices SMT Solver. http://yices.csl.sri.com/
tool-paper.pdf (2006)

24. de Moura, L., Bjørner, N.: Model-Based Theory Combination. Electronic Notes on Theo-
retical Computer Science 198(2), 37–49 (2008)

25. Déharbe, D., Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploiting Symmetry in SMT
Problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction—CADE–
23, LNCS, vol. 6803, pp. 222–236. Springer, Heidelberg (2011)

