The Nuts and Bolts of Yices

Bruno Dutertre
SRI International

SMT 2016
Coimbra, Portugal

Yices 2

Ancestors

- ICS (Rueß \& de Moura, 2002)
- Yices (de Moura, 2005) and Simplics (Dutertre, 2005)
- Yices 1 (de Moura \& Dutertre, 2006)

Current Status

- Yices 2.4.2, released in December 2015
- Supports linear and non-linear arithmetic, arrays, UF, bitvectors
- Limited quantifier reasoning: $\exists \forall$ fragments for bitvector, LRA
- Includes two types of solvers: classic $\operatorname{DPPL}(T)+$ MC-SAT

Distributions

- Free for non-commercial use
- Source + binaries distributed at (http://yices.csl.sri.com)

Overall Architecture

Code Breakdown

- Solvers
- Unit Tests
- Term Database
- Front Ends
- Context
- Utilities

Models

- API
- MC-SAT
- IO
- Parser Utils

Exists/Forall

About 220K lines of C code total (C99)

Common Patterns

Tables

- Many objects are identified by an integer index i
- Then a table stores descriptors for this object at index i
- Example: term table
- For a term t, the table stores:
kind $[t]$: tag such as ITE_TERM
type $[t]$: type of t (an integer index in the type table)
desc $[t]$: pointer to t 's descriptor.
- The descriptor includes arity + children (represented as integer indices)
- Benefit:
- compact representation, small descriptors

Common Patterns

Implicit Negation

- No explicit NOT operator, we use a polarity bit (as in SAT solvers)
- Given a Boolean term t, we represent two variants of t
- positive variant t^{+}denotes t, negative variant t^{-}represents $\neg t$
- the polarity is added to the term index (in the low-order bit):

```
static inline term_t pos_term(int32_t i) {
    return (i << 1);
}
static inline term_t neg_term(int32_t i) {
    return (i << 1) | 1;
}
```


Common Data Structures

Utilies

- many variants of hash tables and hash maps
- vectors, queues, stacks
- basic algorithm: sorting + a few others

Exact Rational Arithmetic

- small rationals are common
- we use our own implementation of rationals (as pairs of 32-bit integers)
- we convert to GMP rational when 32 bits are not enough

Apart from GMP (and libpoly), Yices doesn't use third-party libraries

DPLL(T) Basics

Basic ideas

- Combination of a CDCL-based SAT solver and a theory solver
- Boolean variables in the SAT solver are mapped to atoms in theory T
- The SAT solver assigns truth-values to the atoms.
- The theory solver checks whether the truth assignment is consistent in T

(Minimial) Theory Solver

\circ Checks whether a conjunction of literals $\phi_{1} \wedge \ldots \wedge \phi_{n}$ is satisfiable in theory T

- If not, produces an explanation: subset of $\phi_{1}, \ldots, \phi_{n}$ that's inconsistent.

DPLL(T) Architecture in Yices

Common Features of Real Theory Solvers

Theory Propagation

- set the truth value of an atom in the SAT solver when it's implied in T

$$
\phi_{1} \wedge \ldots \wedge \phi_{n} \Rightarrow \phi^{\prime}
$$

Dynamic Clauses and Variables

- splitting on demand (Barrett, et al., 2006): add new atoms on the fly
- in UF theory: "dynamic Ackermannization" (de Moura \& Bjørner, 2007)
- array theory: lazy instantiation of array axioms

The SAT solver must support these features. This goes beyond what off-the-shelf SAT solvers provide.

DPLL(T) Core in Yices 2

```
SAT Solver Interface
create_boolean_variable(...)
attach_atom_to_bvar(...)
add_clause(...)
propagate_literal(...)
record_theory_conflict(....)
```

Theory Solver Interface

```
assert_atom(...)
propagate(...)
expand_explation(...)
backtrack(...)
final_check(...)
```

Rules

- The theory solver can call propagate_literal only within propagate.
- The theory solver can't add clauses or variables within assert_atom (i.e., during BCP).

Lazy Explanations

Goal

- Avoid the cost of constructing clauses for every propagation (because that can be expensive)
- Only propagations involved in a conflict need such a clause

Two Step Approach

- at propagation time: the theory solver calls

```
propagate_literal(core, l, exp)
``` where exp is anything the solver may later need to generate the explanation.
- during conflict resolution, the SAT solver calls
```

expand_explanation(solver, l, exp, \&vector)

```
to expand the explanation into a conjunction of literals (that implies 1).

\section*{Dynamic Clause Addition}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline\(l_{0}\) & \(l_{1}\) & \(l_{2}\) & & & & & & & \(l_{n}\) \\
\hline
\end{tabular}

\section*{Normal SAT Solving}
- Clauses are added before the search
- All literals are unassigned, we can pick any two as watch literals

In SMT Context
- Clauses are added during the search
- Some literals may be assigned (true or false)
- Need to search for two watch literals in the clause

\section*{Two Watch Literals in Dynamic Clauses}

\section*{Preference Relation}
- For every literal \(l_{i}\) in the clause, let \(v_{i}\) be the value assigned to \(l_{i}\) and \(k_{i}\) the decision level of \(l_{i}\) (if assigned)
- Preference relation: \(\sqsubset\) defined by
\[
\begin{array}{cl}
v_{i}=\text { undef } \wedge v_{j}=\text { false } \Rightarrow l_{i} \sqsubset l_{j} & v_{i}=\text { true } \wedge v_{j}=\text { undef } \Rightarrow l_{i} \sqsubset l_{j} \\
v_{i}=v_{j}=\text { false } \wedge k_{i}>k_{j} \Rightarrow l_{i} \sqsubset l_{j} & v_{i}=v_{j}=\text { true } \wedge k_{i}<k_{j} \Rightarrow l_{i} \sqsubset l_{j}
\end{array}
\]

\section*{Dynamic Clause Addition}
- Pick two smallest literals for \(\sqsubset\). If neither is false, they can be watched literals.
- If one is false and the other is undef backtrack and perform an Boolean propagation.
- If both are false, backtrack and resolve the conflict.

\section*{A Trick: Heuristic Caching of Theory Lemmas}

\section*{Lemma Caching}
- Theory explanations and conflicts are converted to clauses during conflict resolution.
- Normally, these clauses are not stored in the SAT solver.
- Caching is a heuristic that selects theory lemmas and keep them as learned clauses.

\section*{Heuristic}
- Cache only small theory lemmas (max size is a parameter)
- Cache only lemmas for which we can find two watch literals without backtracking

\section*{Congruence Closure and E-Graph}

\section*{Congruence Closure}
- Basic theory: deals with equalities and uninterpreted functions
- Well-known implementations:
- Build an equivalence relation between term
- Merge two classes when they contain congruent terms:
\[
x=y \wedge t=u \Rightarrow f(x, t)=f(y, u)
\]
- In SMT, bookkeeping to generate explanations (Nieuwenhuis \& Olivera, 2006)

\section*{Yices Implementation}
- Congruence closure extended to deal with Boolean terms
- Handles equalities as terms
- Efficient data structures for maintaining use lists (a.k.a. parents)

\section*{Congruence-Closure: Terms}

\section*{Terms and Occurrences}
- Terms are denoted by integers from 0 to nterms - 1
- For a Boolean terms \(t\), we distinguish between positive \(t^{+}\)and negative \(t^{-}\) occurrences (\(t^{-}\)is the same as \(\neg t\)).
- For non-Boolean terms, all occurrences are positive.

\section*{Term Descriptors}
- Each term \(t\) has a descriptor body \([t]\) that can be of the following forms:
- (apply \(f t_{1} \ldots t_{n}\)): uninterpreted function application where \(f, t_{1}, \ldots, t_{n}\) are term occurrences.
- (eq \(t_{1} t_{2}\)): equality
- variable: atomic, uninterpreted term
- Term \(t=0\) represents the Boolean constant. (\(0^{+}\)is true and \(0^{-}\)is false)

\section*{Congruence Closure: Classes}

\section*{Equivalence Class}
- Identified by an integer between 0 and nclasses - 1
- A class stores a set of term occurrences known to be equal
- These are stored in a circular list:
- label \([t]\) : class to which term \(t\) belongs (with a polarity bit)
- next \([t]\) : successor of \(t\) in the circular list (with a polarity bit)
- For a class of Boolean terms, there's an implicit complementary class that contains the same terms with opposite polarities

\section*{Example}
- If \(t, \neg u\), and \(\neg v\) are in the same class \(C\)
\[
\begin{array}{lll}
\operatorname{next}[t]=u^{-} & \text {label }[t]=C^{+} \\
\operatorname{next}[u]=v^{+} & \text {label }[u]=C^{-} \\
\operatorname{next}[v]=t^{-} & \text {label }[v]=C^{-}
\end{array}
\]

Two classes: \(C^{+}=\left\{t^{+}, u^{-}, v^{-}\right\}\)and \(C^{-}=\left\{t^{-}, u^{+}, v^{+}\right\}\).

\section*{Class Attributes}

\section*{Parent Vector}
- parents \([C]\) : vector of term descriptors (pointers)
- Each element in parents \([C]\) is a composite term, parent of a term of class \(C\)
- Example:
if \(t^{+}\)is in \(C\), then parents \([C]\) contains terms in which \(t\) occurs, e.g., (apply \(f t u) \quad(\) eq \(z t) \quad(\) apply \(g u t t)\)

\section*{Root}
- \(\operatorname{root}[C]\) : class representative \(=\) an element of \(C\)
- This is also the root of \(C\) 's merge tree

\section*{Congruence Roots}

\section*{Congruent Terms}
- (apply \(f t_{1} \ldots t_{n}\)) is congruent with (apply \(g u_{1} \ldots u_{n}\)) if label \([f]=\) label \([g]\), label \(\left[t_{1}\right]=\) label \(\left[u_{1}\right], \ldots\), label \(\left[t_{n}\right]=\) label \(\left[u_{n}\right]\)
- (eq \(t_{1} t_{2}\)) is congruent with (eq \(u_{1} u_{2}\)) if label \(\left[t_{1}\right]=\) label \(\left[u_{1}\right]\) and label \(\left[t_{2}\right]=\) label \(\left[u_{2}\right]\) or label \(\left[t_{1}\right]=\) label \(\left[u_{2}\right]\) and label \(\left[t_{2}\right]=\) label \(\left[u_{1}\right]\).

\section*{Congruence Roots}
- For every class of congruent terms, exactly one representative is stored in a hash table. It's the congruence root.

\section*{Simplifications for Equalities}
- (eq \(t_{1} t_{2}\)) simplifies to true if label \(\left[t_{1}\right]=\) label \(\left[t_{2}\right]\)
\(\circ\) (eq \(t_{1} t_{2}\)) simplifies to false if label \(\left[t_{i}\right]=\neg\) label \(\left[t_{2}\right]\).

\section*{Congruence Closure}

\section*{Based on Merging Classes}
- When \(C_{1}\) and \(C_{2}\) are merged, we must visit all parents of, say, \(C_{1}\) to check whether they have become congruent to some other term.
- For each \(p\) in parent \(\left[C_{1}\right]\) :
- If \(p\) is not a congruent root, skip it.
- Otherwise:
1. remove \(p\) from the hash table
2. compute \(p\) 's new signature
3. search for a \(q\) with the same signature in the hash table
4. if such a \(q\) exists then \(p\) is congruent to \(q\), merge their classes
5. otherwise \(p\) is a congurence root, put it back in the hash table.

\section*{Performance Issue}
- How to avoid visiting terms that are not congruence roots?
- Need to remove \(p\) from all its parent vectors in step 4 above.

\section*{Composite and Parent Vector Implementation}

\section*{Composite Stucture}
- a header: tag + arity, hash, term id
- an array of \(n\) children
- an array of \(n\) integer indices (hooks)

Invariant
- If the \(i\)-th child of \(p\) is in class \(C\), then \(p\) is stored in parents \([C]\) at some index \(k\) and we have \(p \mapsto \operatorname{hook}[i]=k\).
- From \(p\), we can find the parent vectors that contain \(p\) and the positions in each vectors where \(p\) is stored.
- This allows \(p\) to be removed from all its parent vectors, without scanning the vectors.

\section*{Composite and Parent Vector Implementation}

\section*{Preprocessing and Simplification}

Preprocessing and formula simplification are not glamorous but they are critical to SMT solving:
- Many SMT-LIB benchmarks are accidently hard: they become easy (sometimes trivial) with the right simplification trick
- Examples: eq_diamond, nec-smt problems, rings problems, unconstrained family
- This is not just in the SMT-LIB benchmarks:
- Bitvector problems are typically solved via bit-blasting (i.e., converted to Boolean SAT). But without simplification, bit-blasting can turn easy problems into exponential search.
- There are other problems that just can't be solved without the right simplifications.

\section*{Example: Nested if-then-elses}

How do we deal with non-boolean if-then-else?
- Lifting:
- Rewrite (>= (ite c t1 t2) u) to (ite c (>= t1 u) (>= t2 u))
- Risk exponential blow up if \(u\) is an if-then-else term
- Use an auxiliary variable
- Replace (ite c t1 t2) by a fresh variable z and add constraints. For example, (>= (ite ct1 t2) u) is converted to
(>= z u)
(implies c (= z t1))
(implies (not c) (= z t2))
- Benefit: this does not blow up

\section*{Nested if-then-else (cont'd)}

But lifting may still work better
- Example: (= t1 a) when t1 is a nested if-then-else with all leaves trivially distinct from a.

\section*{Approach in Yices}

\section*{Special ITE}
- If all leaves of an if-then-else term \(t\) are constant, it's marked as special
- We can then compute the domain of \(t\) : finite set of constant values:
\[
\begin{aligned}
\operatorname{dom}\left(\left(\text { ite } c t_{1} t_{2}\right)\right) & =\operatorname{dom}\left(t_{1}\right) \cup \operatorname{dom}\left(t_{2}\right) \\
\operatorname{dom}(a) & =\{a\} \text { if } a \text { is a constant }
\end{aligned}
\]

\section*{Example Simplification Rules}
\[
\begin{aligned}
\operatorname{dom}(t) & =a \longrightarrow \text { false } \quad \text { if } a \notin \operatorname{dom}(t) \\
\operatorname{dom}\left(\left(\text { ite } c t_{1} t_{2}\right)\right) & =a \longrightarrow c \wedge t_{1}=a \quad \text { if } a \notin \operatorname{dom}\left(t_{2}\right) \\
\operatorname{dom}\left(\left(\text { ite } c t_{1} t_{2}\right)\right) & =a \longrightarrow \neg \wedge t_{2}=a \quad \text { if } a \notin \operatorname{dom}\left(t_{1}\right)
\end{aligned}
\]

\section*{Flattening to Avoid Auxiliary Variables}

Direct translation for (ite \(c_{1}\left(\right.\) ite \(\left.c_{2} a_{2} b_{2}\right)\left(\right.\) ite \(\left.c_{3} a_{3} b_{3}\right)\))
- Introduces one variable for each ite term:
\[
x_{1}=\left(\text { ite } c_{1} x_{2} x_{3}\right) \quad x_{2}=\left(\text { ite } c_{2} a_{2} b_{2}\right) \quad x_{3}=\left(\text { ite } c_{3} a_{3} b_{3}\right)
\]
- Converts to six clauses:
\[
\begin{array}{ccc}
c_{1} \Rightarrow x_{1}=x_{2} & \neg c_{1} \Rightarrow x_{1}=x_{3} & c_{2} \Rightarrow x_{2}=a_{2} \\
\neg c_{2} \Rightarrow x_{2}=b_{2} & c_{3} \Rightarrow x_{3}=a_{3} & \neg c_{3} \Rightarrow x_{3}=b_{3}
\end{array}
\]

\section*{Better Translation}
- Don't introduce \(x_{2}\) and \(x_{3}\) and produce fewer clauses:
\[
\begin{array}{cc}
c_{1} \wedge c 2 \Rightarrow x_{1}=a_{2} & c_{1} \wedge \neg c_{2} \Rightarrow x_{1}=b_{2} \\
\neg c_{1} \wedge c_{3} \Rightarrow x_{1}=a_{3} & \neg c_{1} \wedge \neg c_{3} \Rightarrow x_{1}=b_{3}
\end{array}
\]
- Must be applied carefully if some sub-terms have several occurrences
- Very useful for problems that combine UF and arithmetic: removing auxiliary variables helps the E-graph generate short explanations

\section*{Conclusion}

SMT Solvers
- A lot more than an SAT solver + theory solvers
- Parsing, term representation, simplification, preprocessing represent more code in Yices
- Engineering matters: low-level details make a difference

\section*{Other People Involved}
```

