
Computer Science Laboratory, SRI International

The Nuts and Bolts of Yices

Bruno Dutertre
SRI International

SMT 2016
Coimbra, Portugal

Computer Science Laboratory, SRI International

Yices 2

Ancestors

◦ ICS (Rueß & de Moura, 2002)
◦ Yices (de Moura, 2005) and Simplics (Dutertre, 2005)
◦ Yices 1 (de Moura & Dutertre, 2006)

Current Status

◦ Yices 2.4.2, released in December 2015
◦ Supports linear and non-linear arithmetic, arrays, UF, bitvectors
◦ Limited quantifier reasoning: ∃∀ fragments for bitvector, LRA
◦ Includes two types of solvers: classic DPPL(T) + MC-SAT

Distributions

◦ Free for non-commercial use
◦ Source + binaries distributed at (http://yices.csl.sri.com)

1

http://yices.csl.sri.com

Computer Science Laboratory, SRI International

Overall Architecture

Terms Contexts Models

Terms
and
types

Simplifier
Internalizer

Solver

Simplifier
Internalizer

Solver

2

Computer Science Laboratory, SRI International

Code Breakdown

About 220K lines of C code total (C99)

3

Computer Science Laboratory, SRI International

Common Patterns

Tables

◦ Many objects are identified by an integer index i
◦ Then a table stores descriptors for this object at index i
◦ Example: term table

– For a term t, the table stores:
kind[t]: tag such as ITE TERM

type[t]: type of t (an integer index in the type table)
desc[t]: pointer to t’s descriptor.

– The descriptor includes arity + children (represented as integer indices)
◦ Benefit:

– compact representation, small descriptors

4

Computer Science Laboratory, SRI International

Common Patterns

Implicit Negation

◦ No explicit NOT operator, we use a polarity bit (as in SAT solvers)
◦ Given a Boolean term t, we represent two variants of t

– positive variant t+ denotes t, negative variant t− represents ¬t
– the polarity is added to the term index (in the low-order bit):

static inline term_t pos_term(int32_t i) {
return (i << 1);

}

static inline term_t neg_term(int32_t i) {
return (i << 1) | 1;

}

5

Computer Science Laboratory, SRI International

Common Data Structures

Utilies

◦ many variants of hash tables and hash maps
◦ vectors, queues, stacks
◦ basic algorithm: sorting + a few others

Exact Rational Arithmetic

◦ small rationals are common
◦ we use our own implementation of rationals (as pairs of 32-bit integers)
◦ we convert to GMP rational when 32 bits are not enough

Apart from GMP (and libpoly), Yices doesn’t use third-party libraries

6

Computer Science Laboratory, SRI International

DPLL(T) Basics

Basic ideas

◦ Combination of a CDCL-based SAT solver and a theory solver
◦ Boolean variables in the SAT solver are mapped to atoms in theory T
◦ The SAT solver assigns truth-values to the atoms.
◦ The theory solver checks whether the truth assignment is consistent in T

(Minimial) Theory Solver

◦ Checks whether a conjunction of literals φ1 ∧ . . . ∧ φn is satisfiable in theory T
◦ If not, produces an explanation: subset of φ1, . . . , φn that’s inconsistent.

7

Computer Science Laboratory, SRI International

DPLL(T) Architecture in Yices

CDCL
SAT

Solver

UF
Solver

Array
Solver

Arithmetic
Solver

Bitvector
Solver

8

Computer Science Laboratory, SRI International

Common Features of Real Theory Solvers

Theory Propagation

◦ set the truth value of an atom in the SAT solver when it’s implied in T

φ1 ∧ . . . ∧ φn ⇒ φ′

Dynamic Clauses and Variables

◦ splitting on demand (Barrett, et al., 2006): add new atoms on the fly
◦ in UF theory: “dynamic Ackermannization” (de Moura & Bjørner, 2007)
◦ array theory: lazy instantiation of array axioms

The SAT solver must support these features. This goes beyond what off-the-shelf
SAT solvers provide.

9

Computer Science Laboratory, SRI International

DPLL(T) Core in Yices 2

SAT Solver Interface
create_boolean_variable(...)
attach_atom_to_bvar(...)
add_clause(...)
propagate_literal(...)
record_theory_conflict(....)

Theory Solver Interface
assert_atom(...)
propagate(...)
expand_explation(...)
backtrack(...)
final_check(...)

Rules

◦ The theory solver can call propagate literal only within propagate.
◦ The theory solver can’t add clauses or variables within assert atom (i.e., during

BCP).

10

Computer Science Laboratory, SRI International

Lazy Explanations

Goal

◦ Avoid the cost of constructing clauses for every propagation (because that can
be expensive)
◦ Only propagations involved in a conflict need such a clause

Two Step Approach

◦ at propagation time: the theory solver calls
propagate literal(core, l, exp)

where exp is anything the solver may later need to generate the explanation.
◦ during conflict resolution, the SAT solver calls

expand explanation(solver, l, exp, &vector)

to expand the explanation into a conjunction of literals (that implies l).

11

Computer Science Laboratory, SRI International

Dynamic Clause Addition

l0 l1 l2 ln

Normal SAT Solving

◦ Clauses are added before the search
◦ All literals are unassigned, we can pick any two as watch literals

In SMT Context

◦ Clauses are added during the search
◦ Some literals may be assigned (true or false)
◦ Need to search for two watch literals in the clause

12

Computer Science Laboratory, SRI International

Two Watch Literals in Dynamic Clauses

Preference Relation

◦ For every literal li in the clause, let vi be the value assigned to li and ki the
decision level of li (if assigned)
◦ Preference relation: < defined by

vi = undef ∧ vj = false ⇒ li < lj vi = true ∧ vj = undef ⇒ li < lj

vi = vj = false ∧ ki > kj ⇒ li < lj vi = vj = true ∧ ki < kj ⇒ li < lj

Dynamic Clause Addition

◦ Pick two smallest literals for <. If neither is false, they can be watched literals.
◦ If one is false and the other is undef backtrack and perform an Boolean

propagation.
◦ If both are false, backtrack and resolve the conflict.

13

Computer Science Laboratory, SRI International

A Trick: Heuristic Caching of Theory Lemmas

Lemma Caching

◦ Theory explanations and conflicts are converted to clauses during conflict
resolution.
◦ Normally, these clauses are not stored in the SAT solver.
◦ Caching is a heuristic that selects theory lemmas and keep them as learned

clauses.

Heuristic

◦ Cache only small theory lemmas (max size is a parameter)
◦ Cache only lemmas for which we can find two watch literals without

backtracking

14

Computer Science Laboratory, SRI International

Congruence Closure and E-Graph

Congruence Closure

◦ Basic theory: deals with equalities and uninterpreted functions
◦ Well-known implementations:

– Build an equivalence relation between term
– Merge two classes when they contain congruent terms:

x = y ∧ t = u ⇒ f (x, t) = f (y, u)

– In SMT, bookkeeping to generate explanations (Nieuwenhuis & Olivera,
2006)

Yices Implementation

◦ Congruence closure extended to deal with Boolean terms
◦ Handles equalities as terms
◦ Efficient data structures for maintaining use lists (a.k.a. parents)

15

Computer Science Laboratory, SRI International

Congruence-Closure: Terms

Terms and Occurrences

◦ Terms are denoted by integers from 0 to nterms− 1

◦ For a Boolean terms t, we distinguish between positive t+ and negative t−

occurrences (t− is the same as ¬t).
◦ For non-Boolean terms, all occurrences are positive.

Term Descriptors

◦ Each term t has a descriptor body[t] that can be of the following forms:
– (apply f t1 . . . tn): uninterpreted function application where f , t1, . . . , tn are

term occurrences.
– (eq t1 t2): equality
– variable: atomic, uninterpreted term

◦ Term t = 0 represents the Boolean constant. (0+ is true and 0− is false)

16

Computer Science Laboratory, SRI International

Congruence Closure: Classes

Equivalence Class

◦ Identified by an integer between 0 and nclasses− 1

◦ A class stores a set of term occurrences known to be equal
◦ These are stored in a circular list:

– label[t] : class to which term t belongs (with a polarity bit)
– next[t] : successor of t in the circular list (with a polarity bit)

◦ For a class of Boolean terms, there’s an implicit complementary class that
contains the same terms with opposite polarities

Example

◦ If t, ¬u, and ¬v are in the same class C
next[t] = u− label[t] = C+

next[u] = v+ label[u] = C−

next[v] = t− label[v] = C−

Two classes: C+ = {t+, u−, v−} and C− = {t−, u+, v+}.
17

Computer Science Laboratory, SRI International

Class Attributes

Parent Vector

◦ parents[C] : vector of term descriptors (pointers)
◦ Each element in parents[C] is a composite term, parent of a term of class C
◦ Example:

if t+ is in C, then parents[C] contains terms in which t occurs, e.g.,
(apply f t u) (eq z t) (apply g u t t)

Root

◦ root[C] : class representative = an element of C
◦ This is also the root of C ’s merge tree

18

Computer Science Laboratory, SRI International

Congruence Roots

Congruent Terms

◦ (apply f t1 . . . tn) is congruent with (apply g u1 . . . un) if
label[f] = label[g], label[t1] = label[u1], . . . , label[tn] = label[un]

◦ (eq t1 t2) is congruent with (eq u1 u2) if
label[t1] = label[u1] and label[t2] = label[u2] or
label[t1] = label[u2] and label[t2] = label[u1].

Congruence Roots

◦ For every class of congruent terms, exactly one representative is stored in a
hash table. It’s the congruence root.

Simplifications for Equalities

◦ (eq t1 t2) simplifies to true if label[t1] = label[t2]

◦ (eq t1 t2) simplifies to false if label[ti] = ¬label[t2].

19

Computer Science Laboratory, SRI International

Congruence Closure

Based on Merging Classes

◦ When C1 and C2 are merged, we must visit all parents of, say, C1 to check
whether they have become congruent to some other term.
◦ For each p in parent[C1]:

– If p is not a congruent root, skip it.
– Otherwise:

1. remove p from the hash table
2. compute p’s new signature
3. search for a q with the same signature in the hash table
4. if such a q exists then p is congruent to q, merge their classes
5. otherwise p is a congurence root, put it back in the hash table.

Performance Issue

◦ How to avoid visiting terms that are not congruence roots?
◦ Need to remove p from all its parent vectors in step 4 above.

20

Computer Science Laboratory, SRI International

Composite and Parent Vector Implementation

Composite Stucture

◦ a header: tag + arity, hash, term id
◦ an array of n children
◦ an array of n integer indices (hooks)

Invariant

◦ If the i-th child of p is in class C, then p is stored in parents[C] at some index k
and we have p 7→hook[i] = k.

◦ From p, we can find the parent vectors that contain p and the positions in each
vectors where p is stored.
◦ This allows p to be removed from all its parent vectors, without scanning the

vectors.

21

Computer Science Laboratory, SRI International

Composite and Parent Vector Implementation

bodybody

label parents

f u v 1 0 2f

f

u

v

22

Computer Science Laboratory, SRI International

Preprocessing and Simplification

Preprocessing and formula simplification are not glamorous but they are critical to
SMT solving:

◦ Many SMT-LIB benchmarks are accidently hard: they become easy
(sometimes trivial) with the right simplification trick
– Examples: eq diamond, nec-smt problems, rings problems,
unconstrained family

◦ This is not just in the SMT-LIB benchmarks:
– Bitvector problems are typically solved via bit-blasting (i.e., converted to

Boolean SAT). But without simplification, bit-blasting can turn easy problems
into exponential search.

– There are other problems that just can’t be solved without the right
simplifications.

23

Computer Science Laboratory, SRI International

Example: Nested if-then-elses

How do we deal with non-boolean if-then-else?

◦ Lifting:
– Rewrite (>= (ite c t1 t2) u) to (ite c (>= t1 u) (>= t2 u))

– Risk exponential blow up if u is an if-then-else term

◦ Use an auxiliary variable
– Replace (ite c t1 t2) by a fresh variable z and add constraints. For

example, (>= (ite c t1 t2) u) is converted to
(>= z u)
(implies c (= z t1))
(implies (not c) (= z t2))

– Benefit: this does not blow up

24

Computer Science Laboratory, SRI International

Nested if-then-else (cont’d)

But lifting may still work better

◦ Example: (= t1 a) when t1 is a nested if-then-else with all leaves trivially
distinct from a.

1

c2 c3

c1

3 4

c6

5 6

c7

7 8

c4

2

c5

=

0

25

Computer Science Laboratory, SRI International

Approach in Yices

Special ITE

◦ If all leaves of an if-then-else term t are constant, it’s marked as special
◦ We can then compute the domain of t: finite set of constant values:

dom((ite c t1 t2)) = dom(t1) ∪ dom(t2)

dom(a) = {a} if a is a constant

Example Simplification Rules

dom(t) = a −→ false if a 6∈ dom(t)

dom((ite c t1 t2)) = a −→ c ∧ t1 = a if a 6∈ dom(t2)

dom((ite c t1 t2)) = a −→ ¬c ∧ t2 = a if a 6∈ dom(t1)

26

Computer Science Laboratory, SRI International

Flattening to Avoid Auxiliary Variables

Direct translation for (ite c1 (ite c2 a2 b2)(ite c3 a3 b3))

◦ Introduces one variable for each ite term:

x1 = (ite c1 x2 x3) x2 = (ite c2 a2 b2) x3 = (ite c3 a3 b3)

◦ Converts to six clauses:
c1 ⇒ x1 = x2 ¬c1 ⇒ x1 = x3 c2 ⇒ x2 = a2
¬c2 ⇒ x2 = b2 c3 ⇒ x3 = a3 ¬c3 ⇒ x3 = b3

Better Translation

◦ Don’t introduce x2 and x3 and produce fewer clauses:

c1 ∧ c2⇒ x1 = a2 c1 ∧ ¬c2 ⇒ x1 = b2
¬c1 ∧ c3 ⇒ x1 = a3 ¬c1 ∧ ¬c3 ⇒ x1 = b3

◦ Must be applied carefully if some sub-terms have several occurrences
◦ Very useful for problems that combine UF and arithmetic: removing auxiliary

variables helps the E-graph generate short explanations

27

Computer Science Laboratory, SRI International

Conclusion

SMT Solvers

◦ A lot more than an SAT solver + theory solvers
◦ Parsing, term representation, simplification, preprocessing represent more

code in Yices
◦ Engineering matters: low-level details make a difference

28

Computer Science Laboratory, SRI International

Other People Involved

29

